Modeling In-Vehicle Reaches Perturbed by Ride Motion

Kevin Rider, Don Chaffin, Kyle Nebel, Kathryn Mikol
Presented at SAE Digital Human Modeling for Design and Engineering Conference,

Aside the capital investment and without the ability to otherwise simulate, motion capture
is the preferred conduit by which to model human movements in a digital environment.
However, these capture sessions are almost universally conducted in stationary
environments. While this may be adequate for modeling many industrial applications of
digital modeling, many other jobs require operators to perform tasks while being exposed
to a moving environment (e.g. postal drivers, flight attendants, and numerous military and
transportation operations). The Ride Motion Simulator (RMS) at the US Army – Tank
Automotive and armaments Command (TACOM) simulated single-axis sinusoids and
6DOF ride motion, in which twelve participants were asked to perform extended reaches
to eight push-button targets. In order to better ascertain the effects of dynamic ride
motion on in-vehicle reaching tasks, we used a twelve-camera VICON motion capture
system to record and EDS Jack to analyze the associated reach motions. Recent studies
have presented methodologies and results from motion capture studies of human reach
performance under ride motion perturbation (Rider et al. 2003a, Rider et al. 2003b).
Additional studies are underway to augment the development of regression models
predicting movement time and the required target size based on task and ride conditions.
Results of the reach data reveal the critical nature of the design and layout of controls,
with respect to torso-included motions, ellipsoid-shaped buttons, and the inherent
increase in movement time required to successfully complete an in-vehicle task under
ride motion.